Efficient Processing Distributed Joins with Bloomfilter using MapReduce †

نویسندگان

  • Changchun Zhang
  • Lei Wu
  • Jing Li
چکیده

The MapReduce framework has been widely used to process and analyze largescale datasets over large clusters. As an essential problem, join operation among large clusters attracts more and more attention in recent years due to the utilization of MapReduce. Many strategies have been proposed to improve the efficiency of distributed join, among which bloomfilter is a successful one. However, the bloomfilter’s potential has not yet been fully exploited, especially in the MapReduce environment. In this paper, three strategies are presented to build the bloomfilter for the large datasets using MapReduce. Based on these strategies, we design two algorithms for two-way join and one algorithm for multi-way join. The experimental results show that our algorithms can significantly improve the efficiency of current join algorithm. Moreover, cost models of these algorithms are characterized in order to find out the way of improving the performance of two-way and multi-way joins.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient Large Outer Joins over MapReduce

Big Data analytics largely rely on being able to execute large joins efficiently. Though inner join approaches have been extensively evaluated in parallel and distributed systems, there is little published work providing analysis of outer joins, especially on the extremely popular MapReduce platform. In this paper, we studied several current algorithms/techniques used in large outer joins. We f...

متن کامل

H2RDF+: High-performance distributed joins over large-scale RDF graphs

The proliferation of data in RDF format calls for efficient and scalable solutions for their management. While scalability in the era of big data is a hard requirement, modern systems fail to adapt based on the complexity of the query. Current approaches do not scale well when faced with substantially complex, non-selective joins, resulting in exponential growth of execution times. In this work...

متن کامل

Cascading map-side joins over HBase for scalable join processing

One of the major challenges in large-scale data processing with MapReduce is the smart computation of joins. Since Semantic Web datasets published in RDF have increased rapidly over the last few years, scalable join techniques become an important issue for SPARQL query processing as well. In this paper, we introduce the Map-Side Index Nested Loop Join (MAPSIN join) which combines scalable index...

متن کامل

Cost Based Multi-Way Equi-Join Optimization in MapReduce

MapReduce is a prominent programming model above shared nothing architecture for processing big data with a parallel, distributed algorithm on a cluster. Join is an important operation is very inefficient in MapReduce. In this work, a time cost based evolution model is proposed for multi-way join by considering the time cost calculation. A multi-way join consists of start pattern joins and chai...

متن کامل

RDFChain: Chain Centric Storage for Scalable Join Processing of RDF Graphs using MapReduce and HBase

As a massive linked open data is available in RDF, the scalable storage and efficient retrieval using MapReduce have been actively studied. Most of previous researches focus on reducing the number of MapReduce jobs for processing join operations in SPARQL queries. However, the cost of shuffle phase still occurs due to their reduce-side joins. In this paper, we propose RDFChain which supports th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013